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ABSTRACT
We demonstrate the feasibility of long lasting underwater network-

ing by proposing the smart exploitation of the energy harvesting

capabilities of underwater sensor nodes. We define a data rout-

ing framework that allows senders to select the best forwarding

relay taking into account both residual energy and foreseeable

harvestable energy. Our forwarding method, named HyDRO, for
Harvesting-aware Data ROuting, is also configured to consider chan-
nel conditions and route-wide residual energy, performing network

wide optimization via local information sharing. The performance

of our protocol is evaluated via simulations in scenarios modeled to

include realistic underwater settings as well as energy harvesting

based on recorded traces. HyDRO is compared to state-of-the-art

forwarding protocols for underwater networks. Our results show

that jointly considering residual and predicted energy availability

is key to achieve lower energy consumption and latency, while

obtaining much higher packet delivery ratio.
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1 INTRODUCTION
Freeing communications from costly and range-limited cabling,

underwater wireless technology and networking has the poten-

tial to propel scientific and industrial underwater applications into

a new era of purpose and innovation [11]. Overall, it is widely

believed that Underwater Wireless Sensor Networks (UWSNs) will

enable innovative research, ushering in a new economy for the

sustainable exploitation of our oceans and waterways. Widespread

use of UWSNs, however, has been considerably slowed down by

the very specific challenges of the environment where they operate.

These challenges include long propagation delays, extremely low

data rates (few hundreds of bits), unpredictable and highly variable

channel conditions, high occurrence of asymmetric links, long inter-

ference ranges and underwater specific interference from external

noise [15]. As a consequence, networking solutions developed for

terrestrial wireless networks are rendered practically unusable for

underwater networking. This is because these solutions are highly

affected by the quality of the underwater link, whose variations

are less predictable and manageable than that of wireless radio

links, and by the difficult accessibility of the network nodes, often

deployed at considerable depth.

Perhaps, the greatest challenge to the deployment of UWSNs

is providing wireless sensor nodes with the energy needed to per-

form their operations. This is particularly more challenging than

for wireless terrestrial networks, as transmitting data in water re-

quires order of magnitude more power than in air, namely, from the

milliwatts (mW) of prevailing mote technologies [22], to the tens

of watts needed to deliver data to underwater recipients [10]. Un-

derwater wireless nodes are commonly powered through batteries.

For instance, the Teledyne Benthos acoustic Smart Modem comes

with its own battery, which can be rechargeable (SM 976) or not

(SM 975) [30]. Regular batteries last only a few weeks, even if the

node activity is very low. Rechargeable batteries also have limited

lifetime, in that they need to be replaced after a few recharging cy-

cles [27]. Whether rechargeable or not, substituting or recharging

batteries is a costly operation, which requires manned intervention:

Devices need to be retrieved from their underwater locations and

then put back. This constitutes a severe limitation to the realization

of UWSNs, especially if one considers that for many critical applica-

tions (e.g., offshore monitoring of oil plants) node accessibility can

be prevented by adverse environmental conditions. Attempts to
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alleviate this problem have focused on designing devices and solu-

tions aiming at “greenifying” applications or the protocol stack [8].

However, improvements to battery life appear to be unremarkable,

and certainly not enough for the requirements of most applications.

Recent efforts to provide power to untethered underwater nodes

have focused on endowing them with systems for harvesting am-
bient energy. Best source candidates are solar energy (for nodes

deployed close to sea surface), the kinetic energy of underwater

currents, and the energy that can be drawn from vibrations. This is

because for these sources harvesters can be designed with the nec-

essary small form factor that allows them to be deployed effectively

with the node. For instance, piezoelectric methods for ocean energy

harvesting achieve powers that ranges from milliwatts to several

watts depending on the size of the harvester [18]; miniaturized

sea-surface turbines have been designed that are able to provide up

to 700mW, which are suitable to extend terrestrial networks over

the water, and thermally powered Autonomous Underwater Vehicle

are built that use phase-change materials to produce energy from

temperature changes (around 1.5mW per 10 Kelvins of temperature

difference) [5]. Recently, in Cario et al. [7] we presented platforms

for powering underwater acoustic modems via solar panels floating

on buoys and via a sea current turbine to be deployed with nodes at

greater depths. In particular, the sea turbine is capable to generate

power up to 4W at about 42 rpm, achievable with current speeds

of about 1 knot. These works clearly show that it is possible to

recharge the batteries of underwater devices without having to

retrieve them from their location.

This paper constitutes the first attempt at taking advantage of

these new upcoming technologies to demonstrate the feasibility

of energy harvesting-enabled UWSNs (EH UWSNs). We show how

by smartly combining knowledge on available energy and on the

energy harvestable in the near future nodes can dynamically route

data to their final destination (the network sink). This obtains sig-
nificant performance gains over what is possible in networks only

powered by batteries. Our contributions are summarized as follows.

(1) We define the first energy harvesting-aware data forwarding

method for UWSNs, named HyDRO for Harvesting-aware
Data ROuting. Using reinforcement learning-based knowl-

edge, senders are able to select the best forwarding relay for

their data packets considering a judicious combination of

key node and network parameters. Particularly, every time a

node has a data packet to forward, a relay is selected based on

available residual energy, on foreseeable harvestable energy,

on channel quality and on a measure of energy availability

through the whole route to the sink provided by neighbor-

ing nodes, thus addressing network wide performance via

local information exchange. We notice that while machine

learning-based techniques have been extensively used for

terrestrial wireless sensor networks solutions [1, 12, 32], this

is the first application of these techniques to the definition

and optimization of energy harvesting usage in UWSNs.

(2) We model multi-modal harvesting in UWSNs. Particularly,

we model the solar panels and the turbine designed for our

experiments for fish farms [7], and provide them as input

energy sources based on real traces from ocean coastal set-

tings [13, 21]. We implemented our models in SUNSET, a

simulator that represents underwater environments real-

istically, supporting different channel models and detailed

representation of communication component and node en-

ergy expenditure [23]. The flexibility of SUNSET permits us

to seamlessly integrate the models we provide for the solar

panels and sea current turbine, thus enabling experiments

in heterogeneous scenarios where nodes that are deployed

closer to the surface recharge their batteries through solar

panels and nodes that are positioned at greater depth draw

their energy from sea currents (Section 3).

(3) We test the performance of HyDRO through simulations

with SUNSET. Comparison among HyDRO and state-of-

the-art protocols for underwater data forwarding, namely

CARP [4] and QELAR [16], show that HyDRO outperforms

them in all settings: Energy consumption is inferior, nodes

are kept operational considerably longer than by CARP and

QELAR, data latency is kept to a few seconds (in the sin-

gle digits!) and even in the most challenging scenarios—

networks with 40 nodes and high traffic—HyDRO obtains a

PDR that improves over that of CARP and QELAR by sev-

eral tens of percentage points. Our protocol also achieves

remarkable fairness, delivering packets from all nodes in

the networks, even those further from the sink, which are

usually penalized by longer routes and higher interference.

The results that better advocate for EH UWSNs concern the

comparison of running HyDRO also on UWSNs, namely,

on networks without harvesters. In these networks, when a

node “dies” for battery depletion it is for good. We observe

that in EH UWSNs HyDRO obtains a PDR that is 57% higher

than in UWSNs.

Overall, our investigation shows that by delivering more packets

and by keeping nodes operational for longer times, energy har-

vesting and energy harvesting-aware smart routing protocols are

necessary components of UWSNs. Perhaps, they are the only com-

ponents capable of enabling a vast variety of critical underwater

applications.

The rest of the paper is organized as follows. In Section 2 we

survey previous works on underwater energy harvesting and rout-

ing. Section 3 introduces the networking scenario considered in the

paper. Section 4 defines HyDRO in details. Section 5 reports results

from our comparative performance evaluation of HyDRO, CARP,

and QELAR. Finally, Section 6 concludes the paper.

2 RELATEDWORK
The increasing interest for underwater wireless networking has

brought the problem of how to supply power to the network nodes

to center stage. Due to the high costs of replacing or recharging

batteries, especially for the scarce accessibility to the nodes, ambi-

ent energy harvesting is becoming the premier solution to make

UWSNs viable. In case of network nodes deployed in shallow wa-

ters, solutions using solar panels deployed on floating buoys have

been proposed [7, 28]. Particularly, in Cario et al. [7] we describe

the usage of this technology along with the design and testing of a

sea current-based turbine designed explicitly to power an under-

water sensor node. The turbine is able to generate 4W of power

from a current of 1 knot. (These are the harvesting systems we have
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considered in this paper.) Jbaily and Yeung survey the use of piezo-

electric devices for ocean energy [18]. Although the idea of using

the piezoelectric effect as a power take-off mechanism for ocean

energy has been investigated for decades, only recently harvesting

devices have been developed that produce power at a scale that

suitable for EH UWSN nodes (from mWatts to Watts). None of the

works introducing these technologies concerns the definition of

data delivery strategies designed to take advantage of harvested

energy. In fact, to the best of our knowledge, there is no work to date
presenting energy harvesting-aware routing for UWSNs, as it has in-
stead been done extensively for terrestrial wireless networks [3, 25, 34].
Research on routing for UWSNs has mostly been concerned with

energy efficiency (to maximize the savings of the energy available

to the nodes), or performance. In this realm, the list of data delivery

solutions is hefty, including the works of [9, 20, 26, 31] and those

surveyed by [19].

Two solutions are worth mentioning in more details, as they

provide suitable benchmarks for HyDRO, namely, CARP and QE-

LAR. These two solutions have been shown to outperform previous

underwater routing and machine learning-based routing proto-

cols, respectively. The Channel-aware Routing Protocol (CARP) by

Basagni et al. exploits link quality information and node residual

energy for data forwarding, providing robust and reliable network-

ing as never seen before for UWSNs [4]. Nodes are selected as

relays based on their available energy and on the quality of the

links to their neighbors judiciously monitored over time. CARP

utilizes a channel reservation mechanism for channel access and for

selecting packet relays, enabling cross layer design for enhanced

performance. However, for this reason, while achieving reliability

and suffering from few packet collisions, it incurs remarkable la-

tency, especially in large networks. Among those protocols that

make smart routing selection by using reinforcement learning-like

frameworks, the QELAR solution by Hu and Fei is particularly

interesting [16]. Following a Q-learning-based approach, the QE-

LAR reward function is defined to maximize the residual energy

among nodes, accounting for the residual energy of each node as

well as for the energy distribution among neighboring nodes. Even-

tually, relays are chosen depending on the energy they can save.

This makes QELAR a solution that compares well with previous

protocols, especially in terms of network lifetime.

We observe that other solutions for routing that are based on

learning techniques have been presented for underwater network-

ing [2, 17, 24]. However, the scenarios considered in these works are

quite different from those considered in this paper. Particularly, the

MARLIN protocol by Basagni et al. concerns networks with multi-

ple physical layers (multi-modality), and presents learned ways for

choosing not just the best relay, but also the best modem to reach

that relay [2]. The solutions proposed by Plate and Yakayama [24]

and by Hu and Fei [17] are instead concerned with disruption tol-

erant networks. We observe that none of these solutions consider

underwater networks with energy harvesting.

3 ENERGY HARVESTING-ENABLED UWSNS
Our investigation concerns energy harvesting-enabled underwater
wireless sensor networks (EH UWSNs) comprising nodes that are

statically placed at different depths in the ocean. Nodes are equipped

with sensors that produce information in need to be routed to the

network sink, namely, to a node providing functionalities for data

storage, data processing, and as a gateway to terrestrial networks.

The route from a node to the sink may be multi-hop, i.e., data

packets may need to transit through multiple other nodes. For

communication purposes each node is equipped with a half-duplex

and omnidirectional acoustic modem, such as the Teledyne Benthos

SM-975 [30], or the Evologics S2CR 48/78 [10]. To support their

operations nodes harvest energy from the environment and store

it in a rechargeable battery, like those usually provided with the

acoustic modems. Harvesting for nodes deployed at sea bottom or

at relevant depths happens via turbines drawing energy from sea

currents. Nodes deployed closer to sea surface harvest energy via

solar panels deployed on floating devices (e.g., moored buoys) cabled

to the nodes. We recently tested a similar working system using

both solar and current energy harvesting, with circuitry to provide

energy to rechargeable batteries [7]. There might be times when a

node has not enough energy in its battery to support its operations

(e.g., sensing, computation, communications, etc.). When this is the

case, the node turns off all its circuitry, and it is called an all-off
node. It will restart its functions as soon as enough new energy has

been harvested. A typical scenario is depicted in Figure 1. The sink

is depicted as the node with additional wireless radio capabilities

(upper right side of the picture).

Figure 1: An energy harvesting-enabled UWSN (EH UWSN).

The management of all-off nodes is performed through timers,

and through a simple mechanism used by nodes to proactively

signal that their battery levels are crossing a critical threshold.

Particularly, if a node i does not hear packets from node j for a given
time t , it removes node j from the list of its neighbors until node j
is heard again (through direct communication or promiscuously,

by overhearing transmissions from it). Right before running out

of energy, a node j notifies its neighbors about it by setting a field

in its data packet headers. Upon receiving or overhearing packets

with such a set field, node i temporarily removes node j from the

list of its active neighbors.
1

1
We notice that the combination of timers and direct signaling could be also used

to manage the presence of mobile nodes, which show dynamics similar to those of
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4 THE HYDRO PROTOCOL
This section presents HyDRO in details. Specifically, we provide a

description of the basic operation of choosing a relay for packet

forwarding, and we define the framework through which HyDRO

learns how to route.

The operations for transmitting a packet p are implemented by

the following algorithm TransmitPacket(p).

TransmitPacket(p)

1: if there are known neighbors then
2: k = 0

3: while k < K do
4: j = SelectRelay(k)
5: forward packet p to j
6: if (j is heard to transmit p within τ time units) then
7: break

8: end if
9: k = k + 1
10: end while
11: discard packet
12: else
13: broadcast p
14: end if

In general, when a node i has a packet p to forward, it chooses

the most suitable relay j among its neighbors and transmits p to

that relay (lines 4 and 5). After transmission, node i awaits to over-

hear the forwarding of p by relay j (implicit ACK ;2 line 6). If that
happens within a pre-defined time τ , the transmission operation

terminates successfully (line 7). Otherwise, node i retransmits p
till success, for at most K − 1 additional times, K ≥ 1 (while loop).
If all retransmission attempts fail, the packet is dropped (line 11).

(Parameters K and τ are global to the algorithm. They are set at the

start of node operations.)

This description of the protocol assumes that node i has known
neighbors, i.e., that it is always able to select a neighbor j as a
suitable relay (line 4). In case node i knows of no neighboring

nodes, packet p is broadcast in the failsafe attempt that some node

may receive and forward it (lines 1 and 13). This latter situation

arises at the very start of network operations, and every time a node

comes back from being all-off or from some temporary malfunction.

The novel crux of our protocol resides in the algorithm Selec-

tRelay, executed by node i to select the next hop relay j (line 4).
This operation performs a learned choice of a relay, which may even

change at every retransmission attempt k , keeping into account

crucial parameters such as a potential relay residual energy and the

foreseeable availability of some harvestable energy. The algorithm

is driven by a reinforcement learning framework allowing node i
to learn from its current environment, namely, the available and

predicted energy at its neighbors, and their recent goodness in

nodes going all-off and back over time. We intend to explore the extension of HyDRO

to networks with mobile nodes in the future.

2
Each packet is acknowledged implicitly. Particularly, after transmitting a packet, the

sender starts listening to the channel. If it overhears the packet being retransmitted by

the chosen relay within time τ , it considers the packet transmitted successfully. If it

does not, the packet is considered lost. (Only the sink sends explicit ACKs back to its

senders, as it does not forward the packet further.)

forwarding packets (a measure of link quality). In the remainder

of this section we define the learning framework. (For details on

reinforcement learning the reader is referred to the extensive liter-

ature on this subject [29].) We conclude the section by describing

how, using this framework, procedure SelectRelay determines an

optimal forwarding decision, namely, the most suitable relay j for
node i .
A node i handling a packet p is in a state that indicates the number

of times that the packet has been transmitted unsuccessfully. More

formally, the state space S of a node i handling a packet p is the

set {0, . . . ,K − 1} ∪ {rcv,drop}. The set S contains the number

of times k ≤ K − 1 that node i has transmitted p unsuccessfully,

successful packet transmissions (rcv), and the case when the maxi-

mum number K of transmissions has been exceeded and the packet

is discarded (drop).
Node i makes forwarding decisions depending on the set of

possible actions it can take from a state s . This set of actions is
defined as follows:

Ai (s) = {a = j | j ∈ N (i)}, (1)

where a = j is the action of forwarding a packet to neighbor j,
and N (i) is the set of node i current neighbors. Since no action can

happen when s ∈ {rcv,drop}, it is Ai (rcv) = Ai (drop) = ∅.3

Transitions between successive states s and s ′ depend on state s
and on the action a = j performed by node i . Transition probabil-
ities Pai,s→s ′ depend on whether the transmission of packet p is

successful or not. In the first case, if the success happens after k
unsuccessful attempts, node i transitions from state s = k to state

s ′ = rcv with the following probability:

Pai,s→rcv =

{
Pi, jPj,i if 0 ≤ k < K − 1

Pi, j if k = K − 1,
(2)

where Pi, j denotes the probability of correct packet transmission on

the link between nodes i and j . Particularly, successful transmission

depends on the following probabilities: (a) The probability Pi, j that
the packet is received by node j. This probability is computed by

node j and broadcast in the header of its packets. (b) The probability
Pj,i that the packetp, forwarded by node j , is successfully overheard
by node i (implicit ACK). This probability is computed by node i
based on overhearing node j transmissions. (The determination

of these probabilities is described in details below; Equation (7)).

When the packet p has been retransmitted the maximum number

of times K , node i does not need to overhear an ACK, and the

transition depends only on the goodness of the link from node i
to node j. Note that transition probabilities depend on the action

a = j, i.e., they are different for different neighbors j.
If the transmission of p fails, we have two possible transitions. If

k < K −1 the next state is clearly s ′ = k +1. Otherwise, if k = K −1,

the packet p is dropped and the next state is s ′ = drop. In both

cases, the transition probability is given by Pai,s→s ′ = 1 − Pai,s→rcv .

HyDRO routes packets with the goal of maximizing the residual

energy on the whole route towards the sink. To model route-long

residual energy each state-action pair (s,a) is associated with a

reward function ri reflective of the residual energy of the sender

3
Note that we are concerned with single packet forwarding. A state is an abstraction

to model it. In this sense, if a node has no packet to transmit, it has no state.
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node i and of the residual energy on the route from the selected

relay to the sink. More formally:

ri (s,a) =

{
ei (s, a) + ni (s, a) if 0 ≤ k < K − 1

ei (s, a) + ni (s, a) − li (s, a) if k = K − 1.
(3)

In the following, we describe each single component of the re-

ward ri (s,a). Component ei (s,a) is defined as follows:

ei (s,a) =

{
bi + hi − etx k = 0

−etx otherwise,

(4)

wherebi is node i residual energy, andhi is the energy the node will
harvest in the immediate future, which can be obtained by using

some form of ambient energy prediction [6]. With etx we indicate

the energy spent to transmit the packet. The first transmission of the

packet considers both residual and harvestable energy. Successive

transmissions lower the reward only by the amount of energy

needed to transmit the packet. Component ni (s,a) indicates the
residual energy on the path from the next hop relay j to the sink.

Particularly:

ni (s,a) = VjPi, j , (5)

where Vj provides a measure of the residual energy on the path

towards the sink starting from node j . (It is available to node i as it
is broadcast by node j in the header of its packets.) The cost Vj is
multiplied by the probability Pi, j as node j will receive the packet
only in case it is correctly transmitted from node i .

Finally, in case a packet has been unsuccessfully retransmitted for

K−1 times, we associate to the actiona = j of the last retransmission

the energy penalty li (s,a) > 0. This penalty aims at discouraging

node i to drop the packet, i.e., transitions to the drop state. As such,

li (s,a) is defined as:

li (s,a) = L(1 − Pi, j ), (6)

where (1 − Pi, j ) is the probability of dropping the packet, and L is

set to an arbitrarily high value. In other words, as node i reaches
the maximum number K of retransmissions, its actions favor the

reliability of forwarding to the next hop.

We are finally able to describe how a node i that has a packet p
to transmit learns how to route by using it, i.e., its optimal forward-

ing policy. Each node starts with no knowledge of its surrounding

environment. Interacting with its neighbors, it iteratively acquires

and updates its knowledge over time. A value functionVi is approx-
imated and updated relying on current estimations of the transition

probabilities Pai,s→s ′ , and on the estimated value of the functions

Vj from neighboring nodes j , needed to estimate the reward ri (s,a)
(Equations (3) and (5)). (As such, all values of the transition probabil-

ities, and of functionsV and r are intended to be estimates changing

over time.) Algorithm SelectRelay describes the learning process

of node i and the corresponding determination of the best relay for

packet p.

SelectRelay(k)

1: for all (s ∈ S) do
2: for all a ∈ Ai (s) do
3: Qi (s,a) = ri (s,a) + γ

∑
s ′∈S Pai,s→s ′Vi (s

′)

4: end for
5: Vi (s) = maxa∈Ai (s)Qi (s,a) #Update
6: end for
7: j = argmaxj ∈Ai (k )Qi (k,a) #Forwarding decision
8: return j

The algorithm takes as input the current state k . When packet p
is ready for transmission, node i computes the new value function

based on the most recent information received from its neighbors

(lines 1 to 6). Once the value function has been updated, the best

forwarding action, namely, a relay, can be selected (line 7).

The execution of algorithm SelectRelay relies on the knowledge

of the following.

• The transition probabilities Pai,s→s ′ . The estimation of the

transition probabilities is based on the estimation of the link

probabilities Pi, j (Equation (2)). Nodes estimate link quality

upon receiving a packet. In particular, a node j keeps count
of the number of packets ni, j received from each neighbor i ,
even if node j is not the packet intended destination. The

incoming link probability is then estimated as

Pi, j =
ni, j

ni
, (7)

where ni is the total number of packets sent by node i , an in-

formation that node i broadcasts in the header of its packets.

These estimates are then broadcast by node j into its packet

headers, to be overheard by its neighbors. To record varying

link conditions the counts ni and ni, j are computed over

a sliding window. If node i fails to overhear transmissions

from a neighbor j within a given time it “degrades” Pi, j to
ni

(ni+1)
Pi, j .

• The packet forwarding reward ri (s,a). According to Equa-

tion (3) computing ri (s,a) requires access to information

local to node i (including bi , hi , etx , L and Pi, j ), and to the

value functionVj of each if its neighbors j , which is broadcast
by node j in the header of its packets.

• The discount factor γ , 0 ≤ γ ≤ 1, which is used to provide a

way of deciding the importance of future costs.

5 PERFORMANCE EVALUATION
We evaluate the performance of HyDRO via simulations in scenarios

modeled to include realistic underwater channel conditions as well

as energy harvesting based on recorded traces. The performance of

our protocol is also compared to that of two solutions that represent

the state-of-the-art in routing for UWSNs in scenarios like those

considered here. The two protocols are: (i) CARP, a cross-layer

solution using channel reservation via control packets (named PING

and PONG) that carry routing information [4], and (ii) QELAR,

a machine learning-based protocol designed for minimizing and

balancing node energy consumption [16]. (Details can be found in

Section 2 and in the original papers [4, 16].)
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All routing protocols have been implemented in SUNSET [23]

connected to the Bellhop ray tracing tool via the WOSS inter-

face [14]. The input data to Bellhop are those from an area lo-

cated in the Norwegian coast close to Trondheim, with the co-

ordinate (0, 0, 0) of the surface located at 63
◦, 29′, 1.0752′′N and

10
◦, 32′, 46.6728′′E. We use well-known databases for sound speed

profiles, bathymetry profiles and information on the type of bottom

sediments of the selected area, namely, the World Ocean Data-

base, the General Bathymetric Chart of the Oceans (GEBCO), and

the National Geophysical Data Center’s Deck41 data-base, respec-

tively [33].

5.1 Energy harvesting traces and model
We consider nodes equipped with one harvesting device that is

either a solar panel or a sea current turbine. We described both

types of harvesting in Cario et al. for a UWSN deployment [7].

The solar panel is deployed on buoys at sea surface and cabled to

the node. Its maximum output power is 20W. Nodes deployed at

depths greater than 50m draw power from a sea current turbine.

This device is capable to generate a power of about 4W from a

current speed of about 1 knot [7]. Its orientation is fixed, i.e., it does

not change with the direction of the current.

In our simulations we consider actual traces for both sun and

sea currents. Traces concerning the sun are obtained from the

National Renewable Laboratory at Oak Ridge [21]. Current traces

are obtained from the Global Ocean Currents Database (GOCD) [13].

Particularly, we selected sea currents whose speed does not exceed 1

knot, which fits the design of the turbine we modeled [7]. Since the

direction of the sea current changes over time, while each turbine

is fixed, we approximate the speed of the current over each turbine

taking into account the angle between the current itself and the

turbine orientation.

5.2 Simulation scenarios and metrics
We investigate the selected protocols in networks of different size.

Particularly, we consider networks with 20 nodes placed in a rect-

angular region with a surface of 2km
2
, and with 40 nodes deployed

in a rectangular region with a surface of 4km
2
. Nodes are deployed

in the areas randomly and uniformly at depths ranging from 10 to

240m. The sink is located at one of the corners of the deployment

area, 10m below surface. We stipulate that the sink is always on,

i.e., that it is continuously powered (e.g., by replaceable batteries).

Nodes positioned at depth up to 50m harvest energy using solar

cells. All remaining nodes use turbines. We consider only topologies

where nodes are deployed so that there is always at least one route

to the sink from any node.

Nodes communicate through an acoustic modem whose carrier

frequency is set to 25.6kHz for a bandwidth of 4kHz, resulting

in a bit rate of 4000b/s. For these selected values of bandwidth

and carrier frequency the transmission and reception power of

the modem are set to 8.5W and 0.5W, respectively. These values

are consistent with those of the commercial modems by Teledyne

Benthos [30] and Evologics [10]. Each node is equipped with a

rechargeable battery. Initially, the batteries of all nodes are full, and

contain 80kJ of energy.

Traffic is generated according to a Poisson processwith a network-

wide inter-arrival time averaging at {100, 50, 20} seconds, corre-

sponding to low, medium and high traffic, respectively. Once a

packet is generated, it is associated with a source selected randomly

and uniformly among all nodes except the sink, which is the destina-

tion of all packets. The data packet payload size is 1000B. The total

size of a data packet is given by the payload plus the headers added

by the different layers and protocols. The physical header overhead

changes according to the data rate but is dominated by a 10ms syn-

chronization preamble. At the MAC layer, the header size depends

on the protocol. QELAR uses CSMA, whose header contains the

sender and destination addresses and packet type, for which 3B are

enough. This protocol also needs 6 extra bytes for information on

the state space of nodes (e.g., the residual energy). CARP imple-

ments its own MAC. Because of its cross layer design the header of

its MAC packets also carries routing information. Therefore, the

size of its PING and PONG control packets is 10B and 6B, respec-

tively. Its ACK and HELLO packets are 6B long. The CARP MAC

data packet header is 4B long. CARP uses different transmission

power levels for control and data packets. In our experiments the

transmission power for control packet is set to 5.2W. Finally, Hy-

DRO carries information on the value function, Pi, j estimates from

neighbors, and other control information in the packet header. As

a consequence, its size varies with the network size. In our imple-

mentation HyDRO header sizes were 15B and 30B, for networks

with 20 and 40 nodes, respectively. Through varying experiments

we determined the value of the number of retransmissions K used

by HyDRO, QELAR and CARP that produces best performance.

Particularly, K is set to to 5 for low traffic, 4 for medium traffic, and

to 3 for high traffic. We use an exponential moving average filter

as energy harvesting predictor for the HyDRO reward function.

Neighbor discovery and maintenance is performed as follows.

Each node i maintains a list of neighbors N (i). A node j is in the

list N (i) if node i has received a packet from node j or has overhead
node j transmitting a packet. If node i has not received from node j
or has not overheard a packet transmitted by node j for t = 900s, it

removes node j from N (i) as j could be malfunctioning or all off.

(See also Section 3.)

Simulation parameters are summarized in Table 1, which also

shows the values chosen for other HyDRO-specific parameters.

The performance of the considered protocols is evaluated by

investigating the following metrics.

(1) Energy consumption, defined as the energy consumed by the

whole network.

(2) All-off time, namely, the fraction of simulation time (percent-

age) when a node is off for lack of energy.

(3) End-to-end latency, i.e., the time between packet generation

and that of its correct delivery to the sink.

(4) Packet delivery ratio (PDR), defined as the ratio of packets cor-
rectly received by the sink and the number of all generated

packets.

All results are obtained by averaging over data from a number

of simulation runs that allow us to achieve a statistical confidence

of 95% within a 5% precision.
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Table 1: Simulation parameters.

Parameter Value
Simulation duration 6 days

Number of nodes [20, 40]
Size of the deployment area [2km

2
,4km

2
]

Depths of deployment From 10m to 240m

Bit rate 4000b/s

Modem Tx power 8.5W
Modem Rx power 0.5W
Modem Tx power (CARP, ctl pkt) 5.2W
Battery capacity 80kJ

Packet payload size 1000B

HyDRO header size [15, 30]B
CARP header size 4B

QELAR header size 6B

Packet inter-arrival time [100, 50, 20]s (low to high traffic)

Number of retransmissions K [5, 4, 3] (low to high traffic)

Time t to remove node from neighbor list 900s

Time τ to wait for an ACK Traffic and topology dependent

Discount factor γ 0.95

5.3 Performance results
We show results for network scenarios with 40 nodes. (Results

for smaller networks show similar trends and provide no further

insights.)

5.3.1 Energy consumption. Figure 2 shows the average energy
consumed as traffic increases.
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Figure 2: Energy consumption.

Clearly, all protocols consume more at higher traffic because of

the higher number of data bits to carry. HyDRO and CARP show

the best performance. The energy consumed by CARP is naturally

higher than that of HyDRO because of CARP channel reservation

handshake. However, as the PING and PONG packets are quite

small, and as the power used to transmit them is smaller than

that used for data packets, the increase in energy consumption

is contained, being at most 5% higher than that of HyDRO. As

transmission reliability is not explicitly factored into its reward,

QELAR incurs a higher number of retransmissions, especially at

higher traffic, and therefore its energy consumption is 33% higher

than that of HyDRO.We observe that the lower energy consumption

of HyDRO also depends on the inclusion in its reward function of

a penalty for dropping packets. This higher reliability implies less

retransmissions and therefore superior energy savings.

5.3.2 All-off time. Figure 3 shows the average all-off time for

increasing traffic. HyDRO shows the best performance. Despite
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Figure 3: All-off time.

the energy consumption of HyDRO and CARP is about the same

(see above), nodes running HyDRO are all-off 47% less than those

running CARP. This is because HyDRO makes routing choices

that are based also on predicting which nodes will have higher

availability of energy in the near future. This allows HyDRO a

judicious use of available energy. Conversely, the performance of

QELAR is consistent with its higher energy consumption, which

imposes higher number of nodes that are all-off for longer times.

To gain further insights on the protocol management of avail-

able energy we investigated the time till the first node goes all-off.

We observe that, on average, when the network runs HyDRO the

first node goes all-off 43% time later than CARP, and 108% later

than QELAR. This provides further evidence that choosing relays

based on the smart combination of residual energy and predicted

harvested energy keeps nodes operational consistently longer than

other solutions.

5.3.3 End-to-end latency. Figure 4 shows the average end-to-

end latency for increasing traffic.
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Figure 4: End-to-end latency.

Not surprisingly, the latency performance increases with traffic,

because of retransmissions due to interference and longer routes
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due to a higher number of all-off nodes. HyDRO is successful in

providing swift routes to the sink. Compared to that of CARP, its

latency is up to 85% lower, which is mostly because HyDRO does

not have to pay the toll of the lengthy CARP handshakes. The same

holds for QELAR, which also routes packets to the sink considerably

faster than CARP. The latency performance of HyDRO is up to 66%

lower than that of QELAR. This is due to HyDRO reward function,

which considers energy prediction and encodes a hefty penalty

for dropping. This allows nodes running HyDRO to choose more

reliable relays and to route packets along shorter routes.

5.3.4 Packet delivery ratio. Figure 5 shows the average packet
delivery ratio for increasing traffic.
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Figure 5: Packet delivery ratio.

The PDR of all protocols decreases with increasing traffic. This

is because of the increased number of packet collisions and also

because the higher number of all-off nodes. HyDRO shows con-

sistently better performance than CARP and QELAR, with perfor-

mance gaps increasing with traffic, which indicates higher scala-

bility. Specifically, its PDR is 26% higher than that of CARP, and

45% than that of QELAR (high traffic). The reason is twofold: (i) in

HyDRO nodes are all-off for less time (Figure 3), and (ii) by trans-

mitting packets on shorter and more reliable routes, and without

the need of a channel reservation handshake, HyDRO reduces the

offered network load, inducing a noticeable lower number of packet

collisions.

We provide further evidence of the superior effectiveness of

HyDRO in managing residual and predicted energy by showing

joint snapshots of packet delivery ratio and all-off time per node.

Figure 6 concerns the topology of a network with 40 nodes and

high traffic running HyDRO, CARP and QELAR (vertical section

view).

The sink is the black square at the top left corner. Nodes that

harvest energy using solar panels are depicted as triangles, while

circles correspond to nodes that use sea current as their harvesting

source. The size of each node is proportional to the all-off time

(the smaller the better), while the color indicates the PDR of that

node (the darker the color, the higher the PDR). Figure 6a shows

that HyDRO is inherently fair to all node. The picture also clearly

confirms that the reason some nodes have lower PDR depends on

the fact that those nodes are all-off, on average, more than other

0 1000 2000 3000 4000

X [m]

-300

-200

-100

0

Z
 [
m

]

0

0.5

1

P
D

R

(a) HyDRO

0 1000 2000 3000 4000

X [m]

-300

-200

-100

0

Z
 [
m

]

0

0.5

1

P
D

R

(b) CARP

0 1000 2000 3000 4000

X [m]

-300

-200

-100

0

Z
 [
m

]

0

0.5

1

P
D

R

(c) QELAR

Figure 6: A vertical view of a network topologywith 40nodes
and high traffic: Joint PDR and all-off time.

nodes. In fact, these nodes are all-off not because of protocol oper-

ations, but because of the actual traces we used: Those nodes are

positioned at locations where the current is not particularly strong.

Nonetheless, HyDRO makes the best out of this harvested energy,

and even nodes with lower PDR are able to deliver considerably

more packets than those delivered by CARP and QELAR, whose

color is definitely lighter (Figure 6b and Figure 6c). The performance

of CARP (Figure 6b) is reflective of its lack of considering incoming

future energy. For this reason, nodes are all-off for longer times,

which explains why the PDR is lower throughout the network.

QELAR shows a marked unfairness to the nodes that are farthest

from the sink (Figure 6c). This is because its reward function does

not impose any penalty for dropped packets, which has a higher

impact on nodes needing longer routes to the sink. We also observe

that nodes that have the highest all-off times obtain abysmal PDR

(as low as 10%), suggesting that, differently from HyDRO, QELAR

cannot consider energy harvestable in the near future.

We conclude this section by providing results that make an even

stronger case for EH UWSNs. We ran our simulation experiments

in scenarios that are the same of those considered so far except that

the nodes do not have energy harvesting capabilities. We observed

that in EH UWSNs HyDRO obtains a PDR that is 57% higher than

that obtained in UWSN. Furthermore, in scenarios with harvesting,

the time when the first node goes all-off happens 48% later than

when the first node dies (for energy depletion) in UWSNs.
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6 CONCLUSIONS
This paper concerns EH UWSNs, namely UWSNs where nodes have

energy harvesting capabilities. In this setting, we present HyDRO,

the first routing protocol that explicitly takes into account harvested

energy for selecting next hop relays. HyDRO rests on a reinforce-

ment learning-based framework that instructs senders to select the

best forwarding relay for their data depending on a well-balanced

combination of residual energy, of energy that can be harvested in

the foreseeable future, and on the forwarding quality of the chan-

nel to neighboring nodes. Through a SUNSET-based performance

investigation we show that HyDRO always outperforms previous

state-of-the-art forwarding protocols: It consumes less energy, it

keeps nodes operational for noticeably longer times, and provides

superior PDR while keeping end-to-end latency at bay. HyDRO is

also fair throughout the network, allowing all nodes to deliver high

PDR, even those that are farther from the sink. By running HyDRO

on networks without harvesters we observe a remarkable decrease

in performance than in EH UWSNs. This result confirms that the

smart exploitation of energy harvesting via suitably designed pro-

tocols constitutes the key to unlock superior performance and to

enable a wider variety of underwater applications.
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